
Fyrd Documentation
Release 0.6.1b9

Mike Dacre <mike.dacre@gmail.com>

Aug 03, 2017

Contents

1 Getting Started 3
1.1 Simple Job Submission . 3
1.2 Functions . 3

1.2.1 Possible Infinate Recursion Error . 4
1.3 File Submission . 4
1.4 Keywords . 4
1.5 Profiles . 5

2 Configuration 7

3 Keyword Arguments 9
3.1 Adding your own keywords . 9

4 Console Scripts 11
4.1 fyrd . 11

4.1.1 Examples . 11
4.1.2 All Options . 12

4.2 Aliases . 15

5 Advanced Usage 17
5.1 The Job Class . 17

5.1.1 Script File Handling . 17
5.1.2 Job Output Handling and Retrieval . 18

5.2 Job Files . 18
5.3 Helpers . 18

5.3.1 Pandas . 19
5.3.2 Running on a split file . 19

5.4 Queue Management . 20
5.5 Config . 21
5.6 Logging . 21

6 API Reference 23
6.1 fyrd.queue . 23

6.1.1 fyrd.queue.Queue . 23
6.1.2 fyrd.queue functions . 23

6.2 fyrd.job . 24
6.2.1 fyrd.job.Job . 24

i

6.3 fyrd.submission_scripts . 24
6.4 fyrd.options . 24
6.5 fyrd.conf . 25

6.5.1 config . 25
6.5.2 profiles . 25

6.6 fyrd.helpers . 25
6.7 fyrd.basic . 26
6.8 fyrd.local . 26

6.8.1 fyrd.local.JobQueue . 26
6.8.2 fyrd.local.job_runner . 26

6.9 fyrd.run . 26
6.10 fyrd.logme . 26

ii

Fyrd Documentation, Release 0.6.1b9

Python job submission on torque and slurm clusters with dependency tracking. Pronounced ‘feared’ (sort of), Anglo-
Saxon for an army, particularly an army of freemen (an army of nodes). The logo is based on a Saxon shield commonly
used in these fyrds. This library used to be known as ‘Python Cluster’.

Allows simple job submission with dependency tracking and queue waiting on either torque, slurm, or locally with
the multiprocessing module. It uses simple techniques to avoid overwhelming the queue and to catch bugs on the fly.

It is routinely tested on Mac OS and Linux with slurm and torque clusters, or in the absence of a cluster, on Python
versions 2.7.10, 2.7.11, 2.7.12, 3.3.0, 3.4.0, 3.5.2, 3.6.2, and 3.7-dev. The full test suite is available in the tests folder.

For complete documentation see the documentation site and the Fyrd.pdf document in this repository.

Contents:

Contents 1

https://fyrd.readthedocs.io

Fyrd Documentation, Release 0.6.1b9

2 Contents

CHAPTER 1

Getting Started

Simple Job Submission

At its simplest, this module can be used by just executing submit(<command>), where command is a function or
system command/shell script. The module will autodetect the cluster, generate an intuitive name, run the job, and
write all outputs to files in the current directory. These can be cleaned with clean_dir().

To run with dependency tracking, run:

import fyrd
job = fyrd.submit(<command1>)
job2 = fyrd.submit(<command2>, depends=job1)
out = job2.get() # Will block until job completes

The submit() function is actually just a wrapper for the Job class. The same behavior as above can be obtained by
initializing a Job object directly:

import fyrd
job = fyrd.Job(<command1>)
job.submit()
job2 = fyrd.Job(<command2>, depends=job1).submit()
out = job2.get() # Will block until job completes

Note that as shown above, the submit method returns the Job object, so it can be called on job initialization. Also
note that the object returned by calling the submit() function (as in the first example) is also a Job object, so these two
examples can be used fully interchangeably.

Functions

The submit function works well with python functions as well as with shell scripts and shell commands, in fact, this is
the most powerful feature of this package. For example:

3

Fyrd Documentation, Release 0.6.1b9

import fyrd
def raise_me(something, power=2):

return something**power
outs = []
if __name__ == '__main__':

for i in range(80):
outs.append(fyrd.submit(my_function, (i,), {'power': 2},

mem='10MB', time='00:00:30'))
final_sum = 0
for i in outs:

final_sum += i.get()
print(final_sum)

By default this will submit every instance as a job on the cluster, then get the results and clean up all intermediate files,
and the code will work identically on a Mac with no cluster access, a slurm cluster, or a torque cluster, with no need
to change syntax.

This is very powerful when combined with simple methods that split files or large python classes, to make this kind
of work easier, a number of simple functions are provided in the helpers module, to learn more about that, review the
Advanced Usage section of this documentation.

Function submission works equally well for submitting methods, however the original class object will not be updated,
the method return value will be accurate, but any changes the method makes to self will not be returned from the cluster
and will be lost.

Possible Infinate Recursion Error

Warning: in order for function submission to work, fyrd ends up importing your original script file on the nodes. This
means that all code in your file will be executed, so anything that isn’t a function or class must be protected with an if
__name__ == ‘__main__’: protecting statement.

If you do not do this you can end up with multi-submission and infinite recursion, which could mess up your jobs or
just crash the job, but either way, it won’t be good.

This isn’t true when submitting from an interactive session such as ipython or jupyter.

File Submission

If you want to just submit a job file that has already been created, either by this software or any other method, that can
be done like this:

from fyrd import submit_file
submit_file('/path/to/script', dependencies=[7, 9])

This will return the job number and will enter the job into the queue as dependant on jobs 7 and 9. The dependencies
can be omitted.

Keywords

The Job class, and therefore every submission script, accepts a large number of keyword arguments and synonyms to
make job submission easy. Some good examples:

• cores

4 Chapter 1. Getting Started

Fyrd Documentation, Release 0.6.1b9

• mem (or memory)

• time (or walltime)

• partition (or queue)

The synonyms are provided to make submission easy for anyone familiar with the arguments used by either torque or
slurm. For example:

job = Job('zcat huge_file | parse_file', cores=1, mem='30GB', time='24:00:00')
job = Job(my_parallel_function, cores=28, mem=12000, queue='high_mem')
for i in huge_list:

out.append(submit(parser_function, i, cores=1, mem='1GB', partition='small'))
job = Job('ls /etc')

As you can see, optional keywords make submission very easy and flexible. The whole point of this software it to
make working with a remote cluster in python as easy as possible.

For a full list of keyword arguments see the Keyword Arguments section of the documentation.

All options are defined in the fyrd.options module. If you want extra options, just submit an issue or add them yourself
and send me a pull request.

Profiles

One of the issues with using keyword options is the nuisance of having to type them every time. More importantly,
when writing code to work on any cluster one has to deal with heterogeneity between the clusters, such as the number
of cores available on each node, or the name of the submission queue.

Because of this, fyrd makes use of profiles that bundle keyword arguments and give them a name, so that cluster
submission can look like this:

job = Job('zcat huge_file | parse_file', profile='large')
job = Job(my_parallel_function, cores=28, profile='high_mem')

These profiles are defined in ~/.fyrd/profiles.txt by default and have the following syntax:

[large]
partition = normal
cores = 16
nodes = 1
time = 24:00:00
mem = 32000

This means that you can now do this:

Job(my_function, profile='large')

You can create as many of these as you like.

While you can edit the profile file directly to add and edit profile, it is easier and more stable to use the console script:

..code:: shell

fyrd profile list fyrd profile edit large time:02-00:00:00 mem=64GB fyrd profile edit DEFAULT parti-
tion:normal fyrd profile remove-option DEFAULT cores fyrd profile add silly cores:92 mem:1MB fyrd
profile delete silly

1.5. Profiles 5

Fyrd Documentation, Release 0.6.1b9

The advantage of using the console script is that argument parsing is done on editing the profiles, so any errors are
caught at that time. If you edit the file manually, then any mistakes will cause an Exception to be raised when you try
to submit a job.

If no arguments are given the default profile (called ‘DEFAULT’ in the config file) is used.

Note: any arguments in the DEFAULT profile are available in all profiles if the are not manually overridden there. The
DEFAULT profile cannot be deleted. It is a good place to put the name of the default queue.

6 Chapter 1. Getting Started

CHAPTER 2

Configuration

Many program parameters can be set in the config file, found by default at ~/.fyrd/config.txt.

This file has three sections with the following defaults:

[queue]:

max_jobs (int): sets the maximum number of running jobs before
submission will pause and wait for the queue to empty

sleep_len (int): sets the amount of time the program will wait between
submission attempts

queue_update (int): sets the amount of time between refreshes of the queue.
res_time (int): Time in seconds to wait if a job is in an uncertain

state, usually preempted or suspended. These jobs often
resolve into running or completed again after some time
so it makes sense to wait a bit, but not forever. The
default is 45 minutes: 2700 seconds.

queue_type (str): the type of queue to use, one of 'torque', 'slurm',
'local', 'auto'. Default is auto to auto-detect the
queue.

[jobs]:

clean_files (bool): means that by default files will be deleted when job
completes

clean_outputs (bool): is the same but for output files (they are saved
first)

file_block_time (int): Max amount of time to block after job completes in
the queue while waiting for output files to appear.
Some queues can take a long time to copy files under
load, so it is worth setting this high, it won't
block unless the files do not appear.

filepath (str): Path to write all temp and output files by default,
must be globally cluster accessible. Note: this is

not the runtime path, just where files are written
to.

suffix (str): The suffix to use when writing scripts and output

7

Fyrd Documentation, Release 0.6.1b9

files
auto_submit (bool): If wait() or get() are called prior to submission,

auto-submit the job. Otherwise throws an error and
returns None

generic_python (bool): Use /usr/bin/env python instead of the current
executable, not advised, but sometimes necessary.

profile_file (str): the config file where profiles are defined.

[jobqueue]:

Sets options for the local queue system, will be removed in the future in
favor of database.

jobno (int): The current job number for the local queue, auto-increments
with every submission.

Example file:

[queue]
res_time = 2700
queue_type = auto
sleep_len = 1
queue_update = 2
max_jobs = 1000
bool = True

[jobs]
suffix = cluster
file_block_time = 12
filepath = None
clean_outputs = False
auto_submit = True
profile_file = /Users/dacre/.fyrd/profiles.txt
clean_files = True
generic_python = False

[jobqueue]
jobno = 9

The config is managed by fyrd/conf.py and enforces a minimum set of entries. If the config does not exist or any
entries are missing, they will be created on the fly using the defaults defined in the defaults.

8 Chapter 2. Configuration

CHAPTER 3

Keyword Arguments

To make submission easier, this module defines a number of keyword arguments in the options.py file that can be used
for all submission and Job() functions. These include things like ‘cores’ and ‘nodes’ and ‘mem’.

The following is a complete list of arguments that can be used in this version

depends clean_files clean_outputs cores modules syspaths scriptpath outpath runpath suffix outfile errfile
imports threads nodes features qos time mem partition account export begin

Note: Type is enforced, any provided argument must match that python type (automatic conversion is attempted), the
default is just a recommendation and is not currently used. These arguments are passed like regular arguments to the
submission and Job() functions, eg:

Job(nodes=1, cores=4, mem='20MB')

This will be interpretted correctly on any system. If torque or slurm are not available, any cluster arguments will be
ignored. The module will attempt to honor the cores request, but if it exceeds the maximum number of cores on the
local machine, then the request will be trimmed accordingly (i.e. a 50 core request will become 8 cores on an 8 core
machine).

Adding your own keywords

There are many more options available for torque and slurm, to add your own, edit the options.py file, and look for
CLUSTER_OPTS (or TORQUE/SLURM if your keyword option is only availble on one system). Add your option
using the same format as is present in that file. The format is:

('name', {'slurm': '--option-str={}', 'torque': '--torque-option={}',
'help': 'This is an option!', 'type': str, 'default': None})

You can also add list options, but they must include ‘sjoin’ and ‘tjoin’ keys to define how to merge the list for slurm
and torque, or you must write custom option handling code in fyrd.options.options_to_string(). For an
excellent example of both approaches included in a single option, see the ‘features’ keyword above.

9

Fyrd Documentation, Release 0.6.1b9

10 Chapter 3. Keyword Arguments

CHAPTER 4

Console Scripts

This software is primarily intended to be a library, however some management tasks are just easier from the console.
For that reason, fyrd has a frontend console script that makes tasks such as managing the local config and profiles
trivial, it also has modes to inspect the queue easily, and to wait for jobs from the console, as well as to clean the
working directory.

fyrd

This software has uses a subcommand system to separate modes, and has six modes:

• config — show and edit the contents of the config file

• profile - inspect and manage cluster profiles

• keywords - print a list of current keyword arguments with descriptions for each

• queue - show running jobs, makes filtering jobs very easy

• wait - wait for a list of jobs

• clean - clean all script and output files in the given directory

Several of the commands have aliases (conf and prof being the two main ones)

Examples

fyrd prof list
fyrd prof add large cores:92 mem:200GB partition:high_mem time:00:06:00

fyrd queue # Shows all of your current jobs
fyrd queue -a # Shows all users jobs
fyrd queue -p long -u bob dylan # Show all jobs owned by bob and dylan in the long
→˓queue

11

Fyrd Documentation, Release 0.6.1b9

fyrd wait 19872 19876
fyrd wait -u john

Will block until all of bob's jobs in the long queue finish
fyrd queue -p long -u bob -l | xargs fyrd wait

fyrd clean

All Options

fyrd:

usage: fyrd [-h] [-v] {conf,prof,keywords,queue,wait,clean} ...

Manage fyrd config, profiles, and queue.

============ ======================================
Author Michael D Dacre <mike.dacre@gmail.com>
Organization Stanford University
License MIT License, use as you wish
Version 0.6.2b9
============ ======================================

positional arguments:
{conf,prof,keywords,queue,wait,clean}
conf (config) View and manage the config
prof (profile) Manage profiles
keywords (keys, options)

Print available keyword arguments.
queue (q) Search the queue
wait Wait for jobs
clean Clean up a job directory

optional arguments:
-h, --help show this help message and exit
-v, --verbose Show debug outputs

fyrd conf :

usage: fyrd conf [-h] {show,list,help,update,alter,init} ...

This script allows display and management of the fyrd config file found
here: /home/dacre/.fyrd/config.txt.

positional arguments:
{show,list,help,update,alter,init}
show (list) Show current config
help Show info on every config option
update (alter) Update the config
init Interactively initialize the config

optional arguments:
-h, --help show this help message and exit

Show usage::
fyrd conf show [-s <section>]

12 Chapter 4. Console Scripts

Fyrd Documentation, Release 0.6.1b9

Update usage::
fyrd conf update <section> <option> <value>

Values can only be altered one at a time

To create a new config from scratch interactively::
fyrd conf init [--defaults]

fyrd prof :

usage: fyrd prof [-h]
{show,list,add,new,update,alter,edit,remove-option,del-option,delete,

→˓del}
...

Fyrd jobs use keyword arguments to run (for a complete list run this script
with the keywords command). These keywords can be bundled into profiles, which
are kept in /home/dacre/.fyrd/profiles.txt. This file can be edited directly or
→˓manipulated here.

positional arguments:
{show,list,add,new,update,alter,edit,remove-option,del-option,delete,del}
show (list) Print current profiles
add (new) Add a new profile
update (alter, edit)

Update an existing profile
remove-option (del-option)

Remove a profile option
delete (del) Delete an existing profile

optional arguments:
-h, --help show this help message and exit

Show::
fyrd prof show

Delete::
fyrd prof delete <name>

Update::
fyrd prof update <name> <options>

Add::
fyrd prof add <name> <options>

<options>:
The options arguments must be in the following format::

opt:val opt2:val2 opt3:val3

Note: the DEFAULT profile is special and cannot be deleted, deleting it will
cause it to be instantly recreated with the default values. Values from this
profile will be available in EVERY other profile if they are not overriden
there. i.e. if DEFAULT contains `partition=normal`, if 'long' does not have
a 'partition' option, it will default to 'normal'.

To reset the profile to defaults, just delete the file and run this script
again.

4.1. fyrd 13

Fyrd Documentation, Release 0.6.1b9

fyrd keywords:

usage: fyrd keywords [-h] [-t | -s | -l]

optional arguments:
-h, --help show this help message and exit
-t, --table Print keywords as a table
-s, --split-tables Print keywords as multiple tables
-l, --list Print a list of keywords only

fyrd queue:

usage: fyrd queue [-h] [-u [...] | -a] [-p [...]] [-r | -q | -d | -b]
[-l | -c]

Check the local queue, similar to squeue or qstat but simpler, good for
quickly checking the queue.

By default it searches only your own jobs, pass '--all-users' or
'--users <user> [<user2>...]' to change that behavior.

To just list jobs with some basic info, run with no arguments.

optional arguments:
-h, --help show this help message and exit

queue filtering:
-u [...], --users [...]

Limit to these users
-a, --all-users Display jobs for all users
-p [...], --partitions [...]

Limit to these partitions (queues)

queue state filtering:
-r, --running Show only running jobs
-q, --queued Show only queued jobs
-d, --done Show only completed jobs
-b, --bad Show only completed jobs

display options:
-l, --list Print job numbers only, works well with xargs
-c, --count Print job count only

fyrd wait:

usage: fyrd wait [-h] [-u USERS] [jobs [jobs ...]]

Wait on a list of jobs, block until they complete.

positional arguments:
jobs Job list to wait for

optional arguments:
-h, --help show this help message and exit
-u USERS, --users USERS

A comma-separated list of users to wait for

fyrd clean:

14 Chapter 4. Console Scripts

Fyrd Documentation, Release 0.6.1b9

usage: fyrd clean [-h] [-o] [-s SUFFIX] [-q {torque,slurm,local}] [-n] [dir]

Clean all intermediate files created by the cluster module.

If not directory is passed, the default if either scriptpath or outpath are
set in the config is to clean files in those locations is to clean those
directories. If they are not set, the default is the current directory.

By default, outputs are not cleaned, to clean them too, pass '-o'

Caution:
The clean() function will delete **EVERY** file with
extensions matching those these::

.<suffix>.err

.<suffix>.out

.<suffix>.sbatch & .fyrd.script for slurm mode

.<suffix>.qsub for torque mode

.<suffix> for local mode
_func.<suffix>.py
_func.<suffix>.py.pickle.in
_func.<suffix>.py.pickle.out

positional arguments:
dir Directory to clean (optional)

optional arguments:
-h, --help show this help message and exit
-o, --outputs Clean output files too
-s SUFFIX, --suffix SUFFIX

Suffix to use for cleaning
-q {torque,slurm,local}, --qtype {torque,slurm,local}

Limit deletions to this qtype
-n, --no-confirm Do not confirm before deleting (for scripts)

Aliases

Several shell scripts are provided in bin/ to provide shortcuts to the fyrd subcommands:

• my-queue (or myq): fyrd queue

• clean-job-files: fyrd clean

• monitor-jobs: fyrd wait

• cluster-keywords: fyrd keywords

4.2. Aliases 15

Fyrd Documentation, Release 0.6.1b9

16 Chapter 4. Console Scripts

CHAPTER 5

Advanced Usage

Most of the important functionality is covered in the Getting Started section, and full details on the library are available
in the API Reference section. This section just provides some extra information on Job and Queue management, and
importantly introduces some of the higher-level options available through the helpers.

The Job Class

The core of this submission system is the Job class, this class builds a job using keyword arguments and profile parsing.
The bulk of this is done at class initialization and is covered in the getting started section of this documentation and
on job submission with the submit() method. There are several other features of this class to be aware of though.

Script File Handling

Torque and slurm both require submission scripts to work. In the future these will be stored by fyrd in a database and
submitted from memory, but for now they are written to disk.

The creation and writing of these scripts is handled by the Script and Function classes in the fyrd.submission_scripts
module. These classes pass keywords to the options_to_string() function of the options method, which converts them
into a submission string compatible with the active cluster. These are then written to a script for submission to the
cluster.

The Function class has some additional functionality to allow easy submission of functions to the cluster. It tries
to build a list of all possible modules that the function could need and adds import statements to all of them to the
function submission script. It then pickles the submitted function and arguments to a pickle file on the disk, and writes
a python script to the same directory.

This python script unpickles the function and arguments and runs them, pickling either the result or and exception, if
one is raised, to the disc on completion. The submission script calls this python script on the cluster nodes.

The script and output files are written to the path defined by the .filepath attribute of the Job class, which is set using
the ‘filepath’ keyword argument. If not set, this directory defaults to the directory set in the filepath section of the
config file or the current working directory. Note that this path is independent of the .runpath attibute, which is where
the code will actually run, and also defaults to the current working directory.

17

Fyrd Documentation, Release 0.6.1b9

Job Output Handling and Retrieval

The correct way to get outputs from within a python session is to call the .get() method of the Job class. This first calls
the .wait() method, which blocks until job completion, and then the .fetch_outputs() method which calls get_output,
get_stdout, and get_stderr, which save all function outputs, STDOUT, and STDERR to the class. This means that
outputs can be accessed using the following Job class attributes:

• .output — the function output for functions or STDOUT for scripts

• .stdout — the STDOUT for the script submission (always present)

• .stderr — the STDERR for the script submission (always present)

This makes job output retrieval very easy, but it is sometimes not what you want, particularly if outputs are very large
(they get loaded into memory).

The wait() method will not save any outputs. In addition get() can be with the save=False argument, which means it
will fetch the output (or STDOUT) only, but will not write them to the class itself.

Note: By default, get() also deletes all script and output files. This is generally a good thing as it keeps the working
directory clean, but it isn’t always what you want. To prevent outputs from being deleted, pass delete_outfiles=False
to get(), or alternatively set the .clean_outputs attribute to False prior to running get(). To prevent the cleaning of any
files, including the script files, pass cleanup=False or set .clean_files to False.

clean_files and clean_outputs can also be set globally in the config file.

Job Files

All jobs write out a job file before submission, even though this is not necessary (or useful) with multiprocessing. This
will change in a future version.

To ensure files are obviously produced by this package and that files are unique the file format is
name.number.random_string.suffix.extension. These are:

name: Defined by the name= argument or guessed from the function/script number: A number count of the total jobs
with the same name already queued random_string: An 8-character random string suffix: A string defined in the config
file, default ‘cluster’ extension: An obvious extension such as ‘.sbatch’ or ‘.qsub’

To change the directory these files are written to, set the filedir item in the config file or use the ‘filedir’ keyword
argument to Job or submit.

NOTE: This directory must be accessible to the compute nodes!!!

It is sometimes useful to set the filedir setting in the config to a single directory accessible cluster-wide. This avoids
cluttering the current directory, particularly as outputs can be retrieved so easily from within python. If you are going
to do this set the ‘clean_files’ and ‘clean_outfiles’ arguments in the config file to avoid cluttering the directory.

All Job objects have a clean() method that will delete any left over files. In addition there is a clean_job_files script
that will delete all files made by this package in any given directory. Be very careful with the script though, it can
clobber a lot of work all at once if it is used wrong.

Helpers

The fyrd.helpers module defines several simple functions that allow more complex job handling.

The helpers are all high level functions that are not required for the library but make difficult jobs easy to assist in the
goal of trivially easy cluster submission.

18 Chapter 5. Advanced Usage

Fyrd Documentation, Release 0.6.1b9

Pandas

The most important function in fyrd.helpers is parapply(), which allows the user to submit a pandas.DataFrame.apply
method to the cluster in parallel by splitting the DataFrame, submitting jobs, and then recombining the DataFrame at
the end, all without leaving any temp files behind. e.g.:

df = pandas.read_csv('my_huge_file.txt')
df = fyrd.helpers.parapply(100, df, long_running_function, profile='fast')

That command will split the dataframe into 100 pieces, submit each to the cluster as a different job with the profile
‘fast’, and then recombine them into a single DataFrame again at the end.

parapply_summary behaves similarly but assumes that the function summarizes the data rather than returning a
DataFrame of the same size. It thus runs the function on the resulting DataFrame also, allowing all dfs to be merged.
e.g.:

df = fyrd.helpers.parapply_summary(df, numpy.mean)

This will return just the mean of all the numeric columns, parapply would return a DataFrame with duplicates for
every submitted job.

Running on a split file

The splitrun function behaves similarly to the parapply() function, with the exception that it works on a filesystem file
instead, which it splits into pieces. It then runs your job on all of the pieces and attempts to recombine them, deleting
the intermediate files as it goes.

If you specify an output file, the outputs are merged and places into that file, otherwise, if the outputs are a string
(always true for scripts), the function returns a merged string. If the outputs are not strings, then the function just
returns a list out outputs that you will have to combine yourself.

The key to this function is that if the job is a script, it must at a minimum contain ‘{file}’ where the file argument goes,
and if the job is a function it must contain and argument or keyword argument that matches ‘<file>’.

If you expect the job to have and output, you must provide the outfile= argument too, and be sure that ‘{outfile}’ is
present in the script, if a script, or ‘<outfile>’ is in either args or kwargs if a function.

In addition, you should pass inheader=True if the input file has a header line, and outheader=True if the same is true
for the outfile. It is very important to pass these arguments, because they both will strip the top line from a file if True.
Importantly, if inheader is True on a file without a header, the top line will appear at the top of every broken up file.

Examples:

script = """my_long_script --in {file} --out {outfile}"""
outfile = fyrd.helpers.splitrun(

100, 'huge_file.txt', script, name='my_job', profile='long',
outfile='output.txt', inheader=True, outheader=True

)

output = fyrd.helpers.splitrun(
100, 'huge_file.txt', function, args=('<file>',), name='my_job',
profile='long', outfile='output.txt', inheader=True, outheader=True

)

5.3. Helpers 19

https://fyrd.readthedocs.io/en/latest/api.html#fyrd.helpers.splitrun

Fyrd Documentation, Release 0.6.1b9

Queue Management

Queue handling is done by the Queue class in the fyrd.queue module. This class calls the fyrd.queue.queue_parser
iterator which in turn calls either fyrd.queue.torque_queue_parser or fyrd.queue.slurm_queue_parser depending on the
detected cluster environment (set by fyrd.queue.QUEUE_MODE and overridden by the ‘queue_type’ config option if
desired (not necessary, queue type is auto-detected)).

These iterators return the following information from the queue:

job_id, name, userid, partition, state, node-list, node-count, cpu-per-node, exit-code

These pieces of information are used to create QueueJob objects for every job, which are stored in the Queue.jobs
attribute (a dictionary). The Queue class provides several properties, attributes, and methods to allow easy filtering of
these jobs.

Most important is the QueueJob.state attribute, which holds information on the current state of that job. To get a list
of all states in the queue, call the Queue.job_states property, which will return a list of states in the queue. All of these
states are also attributes of the Queue class, for example:

fyrd.Queue.completed

returns all completed jobs in the queue as a dictionary (a filtered copy of the .jobs attribute).

Note: torque states are auto-converted to slurm states, as slurm states are easier to read. e.g. ‘C’ becomes ‘completed’.

The most useful method of Queue is wait(), it will take a list of job numbers or Job objects and wait until all of them are
complete. This method is called by the Job.wait() method, and can be called directly to wait for an arbitrary number
of jobs.

To wait for all jobs from a given user, you can do this:

q = fyrd.Queue()
q.wait(q.get_user_jobs(['bob', 'fred']))

This task can also be accomplished with the console application:

fyrd wait <job> [<job>...]
fyrd wait -u bob fred

The method can actually be simply accessed as a function instead of needing the Queue class:

fyrd.wait([1,2,3])

To generate a Queue object, do the following:

import fyrd
q = fyrd.Queue(user='self')

This will give you a simple queue object containg a list of jobs that belong to you. If you do not provide user, all jobs
are included for all users. You can provide qtype to explicitly force the queue object to contain jobs from one queing
system (e.g. local or torque).

To get a dictionary of all jobs, running jobs, queued jobs, and complete jobs, use:

q.jobs
q.running
q.complete
q.queued

20 Chapter 5. Advanced Usage

Fyrd Documentation, Release 0.6.1b9

Every job is a QueueJob class and has a number of attributes, including owner, nodes, cores, memory.

Config

Many of the important options used by this software are set in a config file and can be managed on the console with
fyrd conf

For full information see the Configuration section of this documentation.

Logging

I use a custion logging script called logme to log errors. To get verbose output, set fyrd.logme.MIN_LEVEL to ‘debug’
or ‘verbose’. To reduce output, set logme.MIN_LEVEL to ‘warn’.

5.5. Config 21

Fyrd Documentation, Release 0.6.1b9

22 Chapter 5. Advanced Usage

CHAPTER 6

API Reference

fyrd.queue

The core class in this file is the Queue() class which does most of the queue management. In addition,
get_cluster_environment() attempts to autodetect the cluster type (torque, slurm, normal) and sets the global cluster
type for the whole file. Finally, the wait() function accepts a list of jobs and will block until those jobs are complete.

The Queue class relies on a few simple queue parsers defined by the torque_queue_parser and slurm_queue_parser
functions. These call qstat -x or squeue and sacct to get job information, and yield a simple tuple of that data with the
following members:

job_id, name, userid, partition, state, node-list, node-count, cpu-per-node, exit-code

The Queue class then converts this information into a Queue.QueueJob object and adds it to the internal jobs dictionary
within the Queue class. This list is now the basis for all of the other functionality encoded by the Queue class. It can
be accessed directly, or sliced by accessing the completed, queued, and running attributes of the Queue class, these are
used to simply divide up the jobs dictionary to make finding information easy.

fyrd.queue.Queue

Methods

fyrd.queue functions

parsers

23

Fyrd Documentation, Release 0.6.1b9

utilities

fyrd.job

Job management is handled by the Job() class. This is a very large class that defines all the methods required to build
and submit a job to the cluster.

It accepts keyword arguments defined in fyrd.options on initialization, which are then fleshed out using profile infor-
mation from the config files defined by fyrd.conf .

The primary argument on initialization is the function or script to submit.

Examples:

Job('ls -lah | grep myfile')
Job(print, ('hi',))
Job('echo hostname', profile='tiny')
Job(huge_function, args=(1,2) kwargs={'hi': 'there'},

profile='long', cores=28, mem='200GB')

fyrd.job.Job

Methods

fyrd.submission_scripts

This module defines to classes that are used to build the actual jobs for submission, including writing the files. Function
is actually a child class of Script.

fyrd.options

All keyword arguments are defined in dictionaries in the options.py file, alongside function to manage those dictionar-
ies. Of particular importance is option_help(), which can display all of the keyword arguments as a string or a table.
check_arguments() checks a dictionary to make sure that the arguments are allowed (i.e. defined), it is called on all
keyword arguments in the package.

To see keywords, run fyrd keywords from the console or fyrd.option_help() from a python session.

The way that option handling works in general, is that all hard-coded keyword arguments must contain a dictionary
entry for ‘torque’ and ‘slurm’, as well as a type declaration. If the type is NoneType, then the option is assumed to
be a boolean option. If it has a type though, check_argument() attempts to cast the type and specific idiosyncrasies
are handled in this step, e.g. memory is converted into an integer of MB. Once the arguments are sanitized format() is
called on the string held in either the ‘torque’ or the ‘slurm’ values, and the formatted string is then used as an option.
If the type is a list/tuple, the ‘sjoin’ and ‘tjoin’ dictionary keys must exist, and are used to handle joining.

The following two functions are used to manage this formatting step.

option_to_string() will take an option/value pair and return an appropriate string that can be used in the current queue
mode. If the option is not implemented in the current mode, a debug message is printed to the console and an empty
string is returned.

options_to_string() is a wrapper around option_to_string() and can handle a whole dictionary of arguments, it explic-
itly handle arguments that cannot be managed using a simple string format.

24 Chapter 6. API Reference

Fyrd Documentation, Release 0.6.1b9

fyrd.conf

fyrd.conf handles the config (~/.fyrd/config.txt) file and the profiles (~/.fyrd/profiles.txt) file.

Profiles are combinations of keyword arguments that can be called in any of the submission functions. Both the config
and profiles are just ConfigParser objects, conf.py merely adds an abstraction layer on top of this to maintain the
integrity of the files.

config

The config has three sections (and no defaults):

• queue — sets options for handling the queue

• jobs — sets options for submitting jobs

• jobqueue — local option handling, will be removed in the future

For a complete reference, see the config documentation : Configuration

Options can be managed with the get_option() and set_option() functions, but it is actually easier to use the console
script:

fyrd conf list
fyrd conf edit max_jobs 3000

profiles

Profiles are wrapped in a Profile() class to make attribute access easy, but they are fundamentally just dictionaries of
keyword arguments. They can be created with cluster.conf.Profile(name, {keywds}) and then written to a file with the
write() method.

The easiest way to interact with profiles is not with class but with the get_profile(), set_profile(), and del_profile()
functions. These make it very easy to go from a dictionary of keywords to a profile.

Profiles can then be called with the profile= keyword in any submission function or Job class.

As with the config, profile management is the easiest and most stable when using the console script:

fyrd profile list
fyrd profile add very_long walltime:120:00:00
fyrd profile edit default partition:normal cores:4 mem:10GB
fyrd profile delete small

fyrd.conf.Profile

fyrd.helpers

The helpers are all high level functions that are not required for the library but make difficult jobs easy to assist in the
goal of trivially easy cluster submission.

The functions in fyrd.basic below are different in that they provide simple job submission and management, while the
functions in fyrd.helpers allow the submission of many jobs.

6.5. fyrd.conf 25

https://docs.python.org/3/library/configparser.html

Fyrd Documentation, Release 0.6.1b9

fyrd.basic

This module holds high level functions to make job submission easy, allowing the user to skip multiple steps and to
avoid using the Job class directly.

submit(), make_job(), and make_job_file() all create Job objects in the background and allow users to submit jobs. All
of these functions accept the exact same arguments as the Job class does, and all of them return a Job object.

submit_file() is different, it simply submits a pre-formed job file, either one that has been written by this software or
by any other method. The function makes no attempt to fix arguments to allow submission on multiple clusters, it just
submits the file.

clean() takes a list of job objects and runs the clean() method on all of them, clean_dir() uses known directory and
suffix information to clean out all job files from any directory.

fyrd.local

The local queue implementation is based on the multiprocessing library and is not intended to be used directly, it
should always be used via the Job class because it is somewhat temperamental. The essential idea behind it is that
we can have one JobQueue class that is bound to the parent process, it exclusively manages a single child thread
that runs the job_runner() function. The two process communicate using a multiprocessing.Queue object, and pass
fyrd.local.Job objects back and forth between them.

The Job objects (different from the Job objects in job.py) contain information about the task to run, including the
number of cores required. The job runner manages a pool of multiprocessing.Pool tasks directly, and keeps the total
running cores below the total allowed (default is the system max, can be set with the threads keyword). It backfills
smaller jobs and holds on to larger jobs until there is enough space free.

This is close to what torque and slurm do, but vastly more crude. It serves as a stopgap to allow parallel software
written for compute clusters to run on a single machine in a similar fashion, without the need for a pipeline alteration.
The reason I have reimplemented a process pool is that I need dependency tracking and I need to allow some processes
to run on multiple cores (e.g. 6 of the available 24 on the machine).

The job_runner() and Job objects should never be accessed except by the JobQueue. Only one JobQueue should run
at a time (not enforced), and by default it is bound to fyrd.local.JQUEUE. That is the interface used by all other parts
of this package.

fyrd.local.JobQueue

fyrd.local.job_runner

fyrd.run

fyrd.logme

This is a package I wrote myself and keep using because I like it. It provides syslog style leveled logging (e.g.
‘debug’->’info’->’warn’->’error’->’critical’) and it implements colors and timestamped messages.

The minimum print level can be set module wide at runtime by changing cluster.logme.MIN_LEVEL.

26 Chapter 6. API Reference

	Getting Started
	Simple Job Submission
	Functions
	Possible Infinate Recursion Error

	File Submission
	Keywords
	Profiles

	Configuration
	Keyword Arguments
	Adding your own keywords

	Console Scripts
	fyrd
	Examples
	All Options

	Aliases

	Advanced Usage
	The Job Class
	Script File Handling
	Job Output Handling and Retrieval

	Job Files
	Helpers
	Pandas
	Running on a split file

	Queue Management
	Config
	Logging

	API Reference
	fyrd.queue
	fyrd.queue.Queue
	fyrd.queue functions

	fyrd.job
	fyrd.job.Job

	fyrd.submission_scripts
	fyrd.options
	fyrd.conf
	config
	profiles

	fyrd.helpers
	fyrd.basic
	fyrd.local
	fyrd.local.JobQueue
	fyrd.local.job_runner

	fyrd.run
	fyrd.logme

