Fyrd Documentation
Release 0.6.1-beta.5

Michael Dacre <mike.dacre@gmail.com>

Nov 01, 2016

Contents

1 Installation
1.1 PrerequisSites v v v o e
1.2 Function SUbmMISSION o e e e e e e e e e e e e e

2 Simple Usage

2.1 Setting Environment oo e e e e e e e e e e e e e e e e e e e
2.2 SimpleJob Submission.o e e e e e e e e e
23 Functions e e e e e e
24 File SubmissSion L e e e e e e e e e e
25 ThelJob Class i i e
3 Scripts
301 MY-qQUEUE L e e e e e e e e e e e e e e
32 cluster-profile L e e e
3.3 0 MONItOI-JODS . . . v o i e e e e e e e e e e e e e e e e e
34 clean-job-files e e e e e e e
3.5 cluster-keywords e e

4 Queue Management

5 Advanced Usage

5.1 Keyword Arguments e e e e e e e e e
5.2 Profilesand the ConfigFile e e
53 JobFiles
54 Dependecy Tracking e
5.5 LoggINg. . . . oL e e e e e e e e e

6 Code Overview

7 Why the Name?

8 Issues and Contributing
9 Roadmap

10 Scripts
10.1 clean_job_files L e e e e e

11 API Documentation

[SSERON]

AN L L L e i

O 00032

11

13
13
14
15
16
16

17

19

21

23

25
25

27

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

QUEUEING o o e e e e e e e e e e e e e e 27

JobManagement L. e e e e e e e e e e e e e e 27
OPLONS . . . o v e ot e e e e e e e e e e e e e e 28
ConfigFile e 28
Local Queue Implementation oL e 28
Logme e e 29
Other Functions e e e e 29
Indices and tables L e e 29

Fyrd Documentation, Release 0.6.1-beta.5

Submit jobs to compute clusters with slurm, torque, or simple multiprocessing.

Author | Michael D Dacre <mike.dacre @ gmail.com>
License | MIT License, property of Stanford, use as you wish
Version | 0.6.1-beta.5

Pronounced ‘feared’ (sort of), Anglo-Saxon for an army, particularly an army of freemen (an army of nodes). Formerly
known as ‘Python Cluster’.

Allows simple job submission with dependency tracking and queue waiting with either torque, slurm, or locally with
the multiprocessing module. It uses simple techiques to avoid overwhelming the queue and to catch bugs on the fly.

For complete documentation see the documentation site and the Fyrd.pdf document in this repository.

NOTE: This software is still in beta, the scripts in bin/ do not all function properly and the software has not been fully
tested on slurm systems. Please report any problems to the github issues page. Version 0.6.2 will resolve all of these
outstanding bugs.

NOTE: While this software is extremely powerful for pure python-based cluster job submission, snakemake is possibly
a better choice for very large workflows.

In the future this code will work with Makefiles and will be more robust, but it needs further development before that
happens, for now it can just be used as a simple python submission library.

Contents:

Contents 1

mailto:mike.dacre@gmail.com
https://fyrd.readthedocs.io
https://bitbucket.org/snakemake/snakemake/wiki/Home

Fyrd Documentation, Release 0.6.1-beta.5

2 Contents

CHAPTER 1

Installation

This module will work with Python 2.7+ on Linux systems.

To install, use the standard python method:

git clone https://github.com/MikeDacre/python-cluster
cd python-cluster
python ./setup.py install --user

In general you want user level install even if you have sudo access, as most cluster environments share /home/<user>
across the cluster, making this module available everywhere.

Note: While the name is python-cluster you will import it just as cluster:

’import cluster

1.1 Prerequisites

The only external module that I use in this software is dill. It isn’t 100% required but it makes function submission
much more stable.

If you choose to use dill, it must be installed cluster wide.

1.2 Function Submission

In order to submit functions to the cluster, this module must import them on the compute node. This means that all
of your python modules must be available on every compute node. To avoid pain and debugging, you can do this
manually by running this on your loggin node:

’freeze -—local | grep -v '""“\-e' | cut -d = -f 1 > module_list.txt

And then on the compute nodes:

’cat module_list.txt | xargs pip install —-user

This will ensure that all of your modules are installed globally.

In general it is a good idea to install modules as —user with pip to avoid this issue.

https://pypi.python.org/pypi/dill

Fyrd Documentation, Release 0.6.1-beta.5

4 Chapter 1. Installation

CHAPTER 2

Simple Usage

2.1 Setting Environment

To set the environement, set queue. MODE to one of ['torque’, ‘slurm’, ‘local’], or run get_cluster_environment().

2.2 Simple Job Submission

At its simplest, this module can be used by just executing submit(<command>), where command is a function or
system command/shell script. The module will autodetect the cluster, generate an intuitive name, run the job, and
write all outputs to files in the current directory. These can be cleaned with clean_dir().

To run with dependency tracking, run:

import cluster

job = cluster.submit (<commandl>)

job2 = cluster.submit (<command2>, dependencies=jobl)

exitcode, stdout, stderr = job2.get() # Will block until job completes

2.3 Functions

The submit function works well with python functions as well as with shell scripts and shell commands.

However, in order for this to work, cluster ends up importing your original script file on the nodes. This means that all
code in your file will be executed, so anything that isn’t a function or class must be protected with an:

if name == '__main__':

protecting statment.

If you do not do this you can end up with multi-submission and infinate recursion, which could mess up your jobs or
just crash the job, but either way, it won’t be good.

2.4 File Submission

If you want to just submit a file, that can be done like this:

Fyrd Documentation, Release 0.6.1-beta.5

from cluster import submit_file
submit_file('/path/to/script', dependencies=[7,

91)

This will return the job number and will enter the job into the queue as dependant on jobs 007 and 009. The depen-

dencies can be omitted.

2.5 The Job Class

The core of this submission system is a Job class, this class allows easy job handling and debugging. All of the above
commands work well with the Job class also, but more fine grained control is possible. For example:

my_job = """4#!/bin/bash
parallel /usr/bin/parser ::: folder/x.txt
for i in folder/*.txt; do
echo $i >> my_output.txt
echo job_S$i done!
fimmn
job = cluster.Job (my_job, cores=16)
job.submit ()
job.wait ()
print (job.stdout)
if job.exitcode != 0:
print (job.stderr)

More is also possible, for a full description, see the API documentation here: Job Documentation

Chapter 2. Simple Usage

https://mikedacre.github.io/python-cluster/api.html#job-management

CHAPTER 3

Scripts

While this software is designed to be used as a python library, several scripts are provided to make life easier.

3.1 my-queue

Uses python-cluster to check the job queue for only one user’s jobs. Produces a very simple display, for full job
information, the regular tools can be used (e.g squeue):

Choose jobs to show, default is all:
-r, ——running Show running jobs only
-g, ——queued Show queued jobs only

Choose alternate output style:
-c, ——count Display count only
-1, ——-1list Print space separated list of Jjob numbers

3.2 cluster-profile

This script allows the user to save cluster keyword arguments in a config file located at ~/.python-cluster.
Rather than edit that file directly, use this script to add profiles and options.
There are two classes of options: global options, and profiles.

Global options will be used in all profiles, but only if the option is not already present in the profile definition. Profiles
must be called every time and allow bundled keyword arguments, they can also be overridden by providing keyword
arguments at runtime.

Global options are great for saving a default queue.

Modes:

General:
:list: Display all global options and profiles.

Profile Management:

radd: Add a profile

Usage: add profile_name keyword:arg [keyword:arg ...]
redit: Edit an existing profile

Usage: edit profile_name keyword:arg [keyword:arg ...]

Fyrd Documentation, Release 0.6.1-beta.5

:remove: Delete an existing profile (The default profile will be recreated
if it does not exist when a job is submitted.
Usage: remove|del profile_name

Global Option Management:
radd-global: Add a global keyword
Usage: add-global keyword:arg [keyword:arg ...]
:remove-global: Remove a global keyword
Usage: remove-global|del-global keyword [keyword ...]

Dangerous:
:reset: Completely reset your entire profile to the defaults.

3.3 monitor-jobs

Blocks until provided jobs complete. Allows to monitor by user, partition, or simple job list:

Arguments are cumulative except user. For example::
auto_resubmit -p bob -3 172436 172437

user can be 'self'

This command will monitor all jobs in the bob partition as

well as the two jobs specified directly.

However::
monitor_jobs -p bob -u fred

This command will only monitor fred's jobs in bob (the union).

3.4 clean-job-files

Uses the cluster.job.clean_dir() function to clean all job files in the current directory.

Caution: The clean() function will delete EVERY file with extensions matching those these:

.<suffix>.err

.<suffix>.out

.<suffix>.sbatch & .cluster.script for slurm mode
.<suffix>.gsub for torque mode

.<suffix> for local mode

_func.<suffix>.py

_func.<suffix>.py.pickle.in
_func.<suffix>.py.pickle.out

Usage:

Will work with no commands.

optional arguments:

-h, —-help show this help message and exit

-d DIR, —-dir DIR Directory to clean

-s, ——suffix SUFFIX Directory to clean

-g, ——gtype {torque,slurm,local} Limit deletions to this gtype

-n, ——no-confirm Do not confirm before deleting (for scripts)
-v, ——verbose Show debug information

8 Chapter 3. Scripts

Fyrd Documentation, Release 0.6.1-beta.5

3.5 cluster-keywords

Prints simple help information on the available keyword arguments. It calls the cluster_help() function, which means
that keyword information is always up to date.

3.5. cluster-keywords 9

Fyrd Documentation, Release 0.6.1-beta.5

10 Chapter 3. Scripts

CHAPTER 4

Queue Management

This module provides simple queue management functions

To generate a queue object, do the following:

import cluster
g = cluster.Queue (user='self'")

This will give you a simple queue object containg a list of jobs that belong to you. If you do not provide user, all jobs
are included for all users. You can provide gtype to explicitly force the queue object to contain jobs from one queing
system (e.g. local or torque).

To get a dictionary of all jobs, running jobs, queued jobs, and complete jobs, use:

. jobs
.running
.complete
.queued

Q Q9 Q \Q

Every job has a number of attributes, including owner, nodes, cores, memory.

11

Fyrd Documentation, Release 0.6.1-beta.5

12 Chapter 4. Queue Management

CHAPTER 5

Advanced Usage

5.1 Keyword Arguments

To make submission easier, this module defines a number of keyword arguments in the options.py file that can be used
for all submission and Job() functions. These include things like ‘cores’ and ‘nodes’ and ‘mem’.

The following is a complete list of arguments that can be used in this version:

Used in every mode::

cores: Number of cores to use for the Jjob
Type: int; Default: 1
modules: Modules to load with the “module load™ command
Type: list; Default: None
filedir: Folder to write cluster files to, must be accessible to the compute
nodes.
Type: str; Default:
dir: The working directory for the job
Type: str; Default: path argument
suffix: A suffix to append to job files (e.g. job.suffix.gsub)
Type: str; Default: cluster
outfile: File to write STDOUT to
Type: str; Default: None
errfile: File to write STDERR to

Type: str; Default: None

Used for function calls::

imports: Imports to be used in function calls (e.g. sys, os) if not provided,
defaults to all current imports, which may not work if you use complex
imports. The list can include the import call, or just be a name, e.g.
['"from os import path', 'sys']
Type: list; Default: None

Used only in local mode::
threads: Number of threads to use on the local machine

Type: int; Default: 8

Options that work in both slurm and torque::

nodes: Number of nodes to request
Type: int; Default: 1

features: A comma-separated list of node features to require
Type: list; Default: None

time: Walltime in HH:MM:SS

Type: str; Default: 12:00:00

13

Fyrd Documentation, Release 0.6.1-beta.5

mem: Memory to use in MB (e.g. 4000)
Type: ['int', 'str']; Default: 4000
partition: The partition/queue to run in (e.g. local/batch)
Type: str; Default: None
account: Account to be charged
Type: str; Default: None
export: Comma separated list of environmental variables to export

Type: str; Default: None

Used for slurm only::
begin: Start after this much time
Type: str; Default: None

In addition some synonyms are allowed:

cpus: cores
memory: mem
queue: partition

depend, dependencies, dependency: depends

Note: Type is enforced, any provided argument must match that python type (automatic conversion is attempted), the
default is just a recommendation and is not currently used. These arguments are passed like regular arguments to the
submission and Job() functions, eg:

Job (nodes=1, cores=4, mem='20MB")

This will be interpretted correctly on any system. If torque or slurm are not available, any cluster arguments will be
ignored. The module will attempt to honor the cores request, but if it exceeds the maximum number of cores on the
local machine, then the request will be trimmed accordingly (i.e. a 50 core request will become 8 cores on an 8 core
machine).

Adding your own keywords

There are many more options available for torque and slurm, to add your own, edit the options.py file, and look for
CLUSTER_OPTS (or TORQUE/SLURM if your keyword option is only availble on one system). Add your option
using the same format as is present in that file. The format is:

("name', {'slurm': '—-option-str= ', 'torque': '—-—-torque-option={}"',
'help': 'This is an option!', 'type': str, 'default': None})

You can also add list options, but they must include ‘sjoin’ and ‘tjoin’ keys to define how to merge the list for slurm
and torque, or you must write custom option handling code in cluster.options.options_to_string().
For an excellent example of both approaches included in a single option, see the ‘features’ keyword above.

I happily accept pull requests for new option additions (any any other improvements for that matter).

5.2 Profiles and the Config File

To avoid having to enter all keyword arguments every time, profiles can be used. These profiles can store any of the
above keywords and drastically simplify submission. For example:

job = submit (my_function, profile='large')

Instead of:

14 Chapter 5. Advanced Usage

Fyrd Documentation, Release 0.6.1-beta.5

job = submit (my_funtion, nodes=2, cores=16, mem='64GB', partition='bigjobs',
features=['"'highmem'], export='PYTHONPATH')

These profiles are saved in a config file at ~/.python-cluster and can be editted in that file directly, or using the below
functions. To edit them in the file directly, you must make sure that the section is labelled ‘prof_<name>" where
<name> is whatever you want it to be called. e.g.:

[prof_default]
nodes = 1

cores = 16

time = 24:00:00
mem = 32000

Note: a default profile must always exist, it will be added back if it does not exist.

The easiest way to manage profiles is with the cluster_profile script in bin. It defines several easy methods to manage
both profiles and global options, see the scripts section above for information.

Alternatively, the functions cluster.config_file.set_profile() and
cluster.config_file.get_profile () can be used:

cluster.config_file.set_profile('small', {'nodes': 1, 'cores': 1,
'mem': '2GB'})

cluster.config_file.get_profile('small')

To see all profiles run:

’config_file.get_profile()

Other options are defined in the config file, including the maximum number of jobs in the queue, the time to sleep
between submissions, and other options. To see these run:

’cluster.config_file.get_option()

You can set options with:

’cluster.config_file.set_option()

The defaults can be directly edited in config_file.py, they are clearly documented.

5.3 Job Files

All jobs write out a job file before submission, even though this is not necessary (or useful) with multiprocessing. In
local mode, this is a .cluster file, in slurm is is a .cluster.sbatch and a .cluster.script file, in torque it is a .cluster.qsub
file. ‘cluster’ is set by the suffix keyword, and can be overridden.

To change the directory these files are written to, use the ‘filedir’ keyword argument to Job or submit.
NOTE: This directory must be accessible to the compute nodes!!!

All jobs are assigned a name that is used to generate the output files, including STDOUT and STDERR files. The
default name for the out files is STDOUT: name.cluster.out and STDERR: name.cluster.err. These can be overwridden
with keyword arguments.

All Job objects have a clean () method that will delete any left over files. In addition there is a clean_job_files script
that will delete all files made by this package in any given directory. Be very careful with the script though, it can
clobber a lot of work all at once if it is used wrong.

5.3. Job Files 15

Fyrd Documentation, Release 0.6.1-beta.5

5.4 Dependecy Tracking

Dependency tracking is supported in all modes. Local mode uses a unique queueing system that works similarly to
torque and slurm and which is defined in jobqueue.py.

To use dependency tracking in any mode pass a list of job ids to submit or submit_file with the dependencies keyword
argument.

5.5 Logging

I use a custion logging script called logme to log errors. To get verbose output, set logme.MIN_LEVEL to ‘debug’.
To reduce output, set logme.MIN_LEVEL to ‘warn’.

16 Chapter 5. Advanced Usage

CHAPTER 6

Code Overview

There are two important classes for interaction with the batch system: Job and Queue. The essential flow of a job
submission is:

job

job.
.submit ()
.wait ()

job
job

job.
job.

= Job (command/function, arguments, name)

write ()

stdout
clean ()

#

#
#
#
#

Writes the job submission files
Submits the job

Waits for the job to complete
Prints the output from the job
Delete all of the files written

You can also wait for many jobs with the Queue class:

q =

g.wait ([jobl,

Queue (user="self")

job21)

The jobs in this case can be either a Job class or a job number.

17

Fyrd Documentation, Release 0.6.1-beta.5

18 Chapter 6. Code Overview

CHAPTER 7

Why the Name?

I gave this project the name ‘Fyrd’ in honour of my grandmother, Hélene Sandolphen, who was a scholar of old
English. It is the old Anglo-Saxon word for ‘army’, and this code gives you an army of workers on any machine so it
seemed appropriate.

The project used to be called “Python Cluster”, which is more descriptive but frankly boring. Also, about half a dozen
other projects have almost the same name, so it made no sense to keep that name and put the project onto PyPI.

19

Fyrd Documentation, Release 0.6.1-beta.5

20

Chapter 7. Why the Name?

CHAPTER 8

Issues and Contributing

If you have any trouble with this software add an issue in https://github.com/MikeDacre/python-cluster/issues

If you want to help improve it, please fork the repo and send me pull requests when you are done.

21

https://github.com/MikeDacre/python-cluster/issues

Fyrd Documentation, Release 0.6.1-beta.5

22

Chapter 8. Issues and Contributing

CHAPTER 9

Roadmap

Right now this software is in _beta_, to get to version 1.0 it needs to be tested by users and demonstrated to be stable.
In addition, I would like to implement the following features prior to the release of v1.0:

* Auto update Job scripts when attributes are changed until files are already written.
* DONE: Profile managing script in bin

» Update of all bin scripts to work with new options

* Persistent job tracking in an sqlite database stored in SHOME

* Mac OS X functionality

» Autoadjusting of job options based on queue features (i.e. implement a ‘max’ option and try to guess the max
cores available for a request on any machine)

* Allow users to define their own keyword arguments in their configuration

If you have any other feature suggestions please email them to me at mike.dacre @gmail.com or open an issue.

23

mailto:mike.dacre@gmail.com

Fyrd Documentation, Release 0.6.1-beta.5

24

Chapter 9. Roadmap

cHAPTER 10

Scripts

This package contains a few little helper scripts to make your life easier. These are not required in order to use the

cluster library.

10.1 clean_job files

usage: clean_job_files [-h] [-d DIR] [-s SUFFIX] [-g {torque,slurm,local}]
[-n] [-v VERBOSE]

Clean all intermediate files created by the cluster module from this dir.

AUTHOR: Michael D Dacre, mike.dacre@gmail.com
ORGANIZATION: Stanford University
LICENSE: MIT License, property of Stanford, use as you wish
CREATED: 2016-34-15 15:06
Last modified: 2016-06-16 10:42

DESCRIPTION: Uses the cluster.job.clean_dir () function

CAUTION: The clean() function will delete *+EVERY** file with
extensions matching those these::
.<suffix>.err
.<suffix>.out
.<suffix>.sbatch & .cluster.script for slurm mode
.<suffix>.gsub for torque mode
.<suffix> for local mode
_func.<suffix>.py
_func.<suffix>.py.pickle.in
_func.<suffix>.py.pickle.out

optional arguments:
-h, —-help show this help message and exit
-d DIR, --dir DIR Directory to clean
-s SUFFIX, —-suffix SUFFIX
Directory to clean
-g {torque,slurm,local}, —-—-gtype {torque,slurm,local}
Limit deletions to this gtype

25

Fyrd Documentation, Release 0.6.1-beta.5

-n, —-—no-confirm Do not confirm before deleting (for scripts)
-v VERBOSE, —--verbose VERBOSE

Show debug information
e search

26

Chapter 10. Scripts

CHAPTER 11

API Documentation

The following documentation is primarily built from the docstrings of the actual source code and can be considered
an API reference.

11.1 Queueing

The most import thing is the Queue() class which does most of the queue mangement. In addition,
get_cluster_environment() attempts to autodetect the cluster type (torque, slurm, normal) and sets the global cluster
type for the whole file. Finally, the wait() function accepts a list of jobs and will block until those jobs are complete.

The Queue class is actually a wrapper for a few simple queue parsers, these call gstat -x or squeue and sacct to get job
information, and return a simple tuple of that data with the following members:

job_id, name, userid, partition, state, node-list, node-count, cpu-per-node, exit-code

The Queue class then converts this information into a Queue.QueueJob object and adds it to the internal jobs dictionary
within the Queue class. This list is now the basis for all of the other functionality encoded by the Queue class. It can
be accessed directly, or sliced by accessing the completed, queued, and running attributes of the Queue class, these are
used to simply divided up the jobs dictionary to make finding information easy.

11.2 Job Management

Job management is handeled by the Job() class, full instructions on using this class are above, in particular review the
‘Keyword Arguments’ section above.

The methods of this class are exposed by a few functions that aim to make job submission easier. The foremost of
these is submit() which can take as little as a single command and execute it. make_job() and make_job_file() work
similarly but just return a Job object, or write the file and then return the Job object respectively. clean() takes a list of
Job objects and runs their internal clean() methods, deleting all written files.

There are two additional functions that are completely independent of the Job object: submit_file() and clean_dir().
submit_file() uses similar methods to the Job class to submit a job to the cluster, but it does not involve the job class
at all, instead just submitting an already created job file. It can do dependency tracking in the same way as a job file,
but that is all. clean_dir() uses the file naming convention established in the Job class (and defined separately here) to
delete all files in a directory that look like they could be made by this module. It has an autoconfirm feature that can
be activated to avoid accidental clobbering.

27

Fyrd Documentation, Release 0.6.1-beta.5

11.3 Options

All keyword arguments are defined in dictionaries in the options.py file, alongside function to manage those dictionar-
ies. Of particular importance is option_help(), which can display all of the keyword arguments as a string or a table.
check_arguments() checks a dictionary to make sure that the arguments are allowed (i.e. definied), it is called on all
keyword arguments in the package.

The way that option handling works in general, is that all hardcoded keyword arguments must contain a dictionary
entry for ‘torque’ and ‘slurm’, as well as a type declaration. If the type is NoneType, then the option is assumed to
be a boolean option. If it has a type though, check_argument() attmepts to cast the type and specific idiosyncracies
are handled in this step, e.g. memory is converted into an integer of MB. Once the arguments are sanitized format() is
called on the string held in either the ‘torque’ or the ‘slurm’ values, and the formatted string is then used as an option.
If the type is a list/tuple, the ‘sjoin’ and ‘tjoin’ dictionary keys must exist, and are used to handle joining.

The following two functions are used to manage this formatting step.

option_to_string() will take an option/value pair and return an appropriate string that can be used in the current queue
mode. If the option is not implemented in the current mode, a debug message is printed to the console and an empty
string is returned.

options_to_string() is a wrapper around option_to_string() and can handle a whole dictionary of arguments, it explic-
itly handle arguments that cannot be managed using a simple string format.

11.4 Config File

Profiles are combinations of keyword arguments that can be called in any of the submission functions. They are
handled in the config_file.py file which just adds an abstraction layer on top of the builtin python ConfigParser script.

The config file also contains other options that can be managed with the get_option() and set_option() functions.
Profiles are wrapped in a Profile() class to make attribute access easy, but they are fundamentally just dictionaries of
keyword arguments. They can be created with cluster.config_file. Profile({kewywds}) and then written to a file with
that class’ write() method. The easiest way to interact with profiles is with the get_profile() and set_profile() functions.
These make it very easy to go from a dictionary of keywords to a profile.

Profiles can then be called with the profile= keyword in any submission function or Job class.

11.5 Local Queue Implementation

The local queue implementation is based on the multiprocessing library and is not intended to be used directly, it
should always be used via the Job class because it is somewhat tempramental. The essential idea behind it is that
we can have one JobQueue class that is bound to the parent process, it exclusively manages a single child thread
that runs the job_runner() function. The two process communicate using a multiprocessing. Queue object, and pass
cluster.jobqueue.Job objects back and forth between them.

The Job objects (different from the Job objects in job.py) contain information about the task to run, including the
number of cores required. The job runner manages a pool of multiprocessing. Pool tasks directly, and keeps the total
running cores below the total allowed (default is the system max, can be set with the threads keyword). It backfills
smaller jobs and holds on to larger jobs until there is enough space free.

This is close to what torque and slurm do, but vastly more crude. It serves as a stopgap to allow parallel software
written for compute clusters to run on a single machine in a similar fashion, without the need for a pipeline alteration.
The reason I have reimplemented a process pool is that I need dependency tracking and I need to allow some processes
to run on multiple cores (e.g. 6 of the available 24 on the machine).

28 Chapter 11. API Documentation

Fyrd Documentation, Release 0.6.1-beta.5

The job_runner() and Job objects should never be accessed except by the JobQueue. Only one JobQueue should run
at a time (not enforced), and by default it is bound to cluster.jobqueue.JQUEUE. That is the interface used by all other
parts of this package.

11.6 Logme
This is a package I wrote myself and keep using because I like it. It provides syslog style leveled logging (e.g.

‘debug’->’info’->"warn’->’error’->’critical’) and it implements colors and timestamped messages.

The minimum print level can be set module wide at runtime by changing cluster.logme. MIN_LEVEL.

11.7 Other Functions

Some other wrapper functions are defined in run.py, these are just little useful knick-knacks that make function sub-
mission and queue management possible.

11.8 Indices and tables

e genindex

e search

11.6. Logme 29

	Installation
	Prerequisites
	Function Submission

	Simple Usage
	Setting Environment
	Simple Job Submission
	Functions
	File Submission
	The Job Class

	Scripts
	my-queue
	cluster-profile
	monitor-jobs
	clean-job-files
	cluster-keywords

	Queue Management
	Advanced Usage
	Keyword Arguments
	Profiles and the Config File
	Job Files
	Dependecy Tracking
	Logging

	Code Overview
	Why the Name?
	Issues and Contributing
	Roadmap
	Scripts
	clean_job_files

	API Documentation
	Queueing
	Job Management
	Options
	Config File
	Local Queue Implementation
	Logme
	Other Functions
	Indices and tables

